Loss-of-Function SCN5A Mutations Associated With Sinus Node Dysfunction, Atrial Arrhythmias, and Poor Pacemaker Capture.
نویسندگان
چکیده
BACKGROUND Cardiac device implantation can be complicated by inability to adequately place leads because of significant lead capture issues. This study sought to determine whether there are genetic bases that underlie poor lead capture. METHODS AND RESULTS Retrospective review of all patients with structurally normal hearts who underwent new device implantation at Texas Children's Hospital between 2009 and 2014 was performed. Patients with inability to capture at 10 V or a final capture threshold ≥3 V at 0.4 ms during implant were analyzed. Among a total of 136 patients (median age, 13 years; range, 3 days to 46 years), 11 patients (8.1%) who underwent dual chamber device implantation had elevated thresholds in the atria (4), ventricle (3), or both chambers (4; atrial-lead threshold, 4.7±4.3 versus 0.7±0.3 V; ventricular-lead, 3.0±3.3 versus 0.7±0.3 V). All 11 patients presented with sinus node dysfunction and 10 had atrial arrhythmias. At implant, inability to find atrial capture was seen in 4 patients. Three demonstrated intermittent complete loss of ventricular capture after implantation: 1 has recurrent syncope, 2 eventually died. Genetic testing performed in 10 demonstrated 7 patients with 6 distinct SCN5A mutations, all predicted to be severe loss-of-function mutations by bioinformatic analyses. In the remaining patients, although putative pathogenic mutations were not found, multiple SCN5A polymorphisms were identified in 2 and a desmin mutation in 1. CONCLUSIONS This study suggests that significant capture issues at implant may be because of loss-of-function SCN5A mutations, providing new insights into SCN5A function. Recognition of this association may be critical for planning device implantation strategies and patient follow-up.
منابع مشابه
Pathophysiological Mechanisms of Sino-Atrial Dysfunction and Ventricular Conduction Disease Associated with SCN5A Deficiency: Insights from Mouse Models
Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na(+) channel (SCN5A) abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We...
متن کاملAltered sinoatrial node function and intra-atrial conduction in murine gain-of-function Scn5a+/ΔKPQ hearts suggest an overlap syndrome
Mutations in SCN5A, the gene encoding the pore-forming subunit of cardiac Na(+) channels, cause a spectrum of arrhythmic syndromes. Of these, sinoatrial node (SAN) dysfunction occurs in patients with both loss- and gain-of-function SCN5A mutations. We explored for corresponding alterations in SAN function and intracardiac conduction and clarified possible mechanisms underlying these in an estab...
متن کاملVariants in the SCN5A Promoter Associated With Various Arrhythmia Phenotypes
BACKGROUND Mutations in the coding sequence of SCN5A, which encodes the cardiac Na(+) channel α subunit, have been associated with inherited susceptibility to various arrhythmias. Variable expression of SCN5A is a possible mechanism responsible for this pleiotropic effect; however, it is unknown whether variants in the promoter and regulatory regions of SCN5A also modulate the risk of arrhythmi...
متن کاملGenetics and Sinus Node Dysfunction.
Sinus node dysfunction (SND) is commonly encountered in the clinic. The clinical phenotype ranges from asymptomatic sinus bradycardia to complete atrial standstill. In some cases, sinus bradycardia is associated with other myocardial conditions such as congenital abnormalities, myocarditis, dystrophies, cardiomyopathies as well as fibrosis or other structural remodeling of the SA node.1-8 Altho...
متن کاملSCN5A and sinoatrial node pacemaker function.
The SCN5A gene encodes specific voltage-dependent Na+ channels abundant in cardiac muscle that open and close at specific stages of cardiac activity in response to voltage change, thereby controlling the magnitude and timecourse of voltage-dependent Na+ currents (iNa) in cardiac muscle cells. Although iNa has been recorded from sinoatrial (SA) node pacemaker cells, its precise role in SA node p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2015